DYNAMICS

FT DYNAMICS (21)

Directions: Solve the following problems. Each is worth 5 points, except if noted at the start of the problem/question. Your work will be graded, not just the answer. Required with each question (with the exceptions of #1, #9, and #10) is a body diagram, free-body diagram, and sum of force equation(s). This test is challenging, not because I want to see you do poorly, but because I feel you are able step up to the challenge. I have been genuinely impressed with your work ethic and your willingness to learn!

1) What is the mass of a 25 kg object?

 The box shown below has a mass of 10kg. The box and the floor have a coefficient of friction of 0.4. Determine the force needed to pull the box at a constant speed.

 F_{c} W_{x} W_{x}

$$\Sigma F_{\mathbf{y}} : \mathcal{N} - \mathcal{W}_{Y} = m\alpha$$

$$\mathcal{N} - \mathcal{W}(050 = 0)$$

$$\mathcal{N} = mg \cos \theta$$

$$\Sigma F_{x} = W_{y} - F_{p} = ma$$

$$WSin 0 - uW = ma$$

$$mg Sin 0 - umglos 0 = ma$$

$$g Sin 0 - ug (os 0) = a$$

$$g (Sin 0 - u(os 0) = a$$

$$(9.8 \%) (Sin 30) - (25) (loss) a$$

$$2.78 \frac{m}{s^{2}} = a$$

4) The 10 kg box below is on a frictionless incline. Determine the acceleration when the angle of the incline is 30 degrees.

J Wx

 $SF_{x}: W_{y}: ma$ $WSin\theta = ma$ $mg Sin\theta = ma$ $g Sin\theta = a$ 9.8 m/s Sin30 = a 4.9 m/s = a

5) The box shown below has a mass of 10kg. The box and the incline have a coefficient of friction of 0.4. Determine the force needed to pull the box at a constant speed up the 30

F wx Fp

EFy: N-Wy=ma N-WCOSO=D N=WCOSO N=mgCosO $\begin{aligned}
& \mathcal{E}_{\mathcal{K}} = F_{\mathcal{F}} + \mathcal{W}_{\mathcal{K}} - F = \mathcal{M}_{\mathcal{K}} \\
& F_{\mathcal{F}} + \mathcal{W}_{\mathcal{K}} \stackrel{\leftarrow}{=} F = \mathcal{O} \\
& F_{\mathcal{F}} + \mathcal{W}_{\mathcal{K}} = F \\
& \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{S}} = F \\
& \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{S}} = F \\
& \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{S}} = F \\
& \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{F}} = \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{F}} = F \\
& \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{F}} = \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{F}} = F \\
& \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{F}} = \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{F}} = \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{F}} = \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{F}} + \mathcal{W}_{\mathcal{F}} = \mathcal{W}_{\mathcal{F}} + \mathcal{W$

83N = F

6) Determine the tension in the string when the 10 kg box is accelerated upward at 2m/s².

AT W

EF = T - W = ma T = me + W T = ma + mg

 $T = m(\alpha + g)$

T= (10/hg) (11.8 m/s2) T= 118W)

7) The box shown below has a mass of 10kg. The angle of the incline is 30 degrees, and there is a 0.65 coefficient of friction between the box and the incline. Knowing the box is initially moving up the incline at 5 m/s, determine the stopping distance of the box.

To us

Σhy: N-w, = ma N-wy = O N = Wy N = W (05 O N = mg (05 O $2F_{\chi} = F_{\rho} + U_{\rho} = ma$ u U + WSin0 = ma u mg los 0 + mg Sin0 = ma u g los 0 + g Sin0 = a g(u los 0 + Sin0) = a g(u los 0 + Sin0) = a (9.875) [.65) (od 30) + Sin30] = a [0.47/2 = a]

No=5m/5
a=10.4m/52
N=Zero

v-vo + 2ux v-vo = x : 0-vo = 0- (0.4 m/s) : -1.2 m

We W

SFx=Wx-Fx=ma
WSInO-WV=ma
mg SinO-WmglosO=ma
gSinO-WglosO=a

9(5:n0. u(050)=a (9.6m/s) (5:430)-(65)(0530)=a

-, 617 = a

2 ty = N-Wy = Ma N-Wy = D N = Wy N = Wlasco N-mg lasco

 $V_0 = 5m/5$ V = Zero C = -.617m/68 C = -.7

102=152+2Cex

 $\frac{v^2 - v_0^2}{2\alpha} = x$

0-(5m/s) = -20.3m (2) \(\frac{2}{5} \) -. 617 m/s \(\frac{2}{5} \) Up the Rum

9) (bonus 3 points) if the values in #7 & #8 are different, explain why. If they are not different, explain why going uphill or downhill doesn't matter. Be concise, feel free to use diagrams with words; whatever helps you get the thoughts across.

10) What is the weight of a 10kg object?

W= 98N